Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.500
Filter
1.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727299

ABSTRACT

The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.


Subject(s)
Adipogenesis , Adipose Tissue, White , Aging , Obesity , Humans , Aging/pathology , Obesity/pathology , Obesity/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Adipocytes/metabolism , Adipocytes/pathology
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731880

ABSTRACT

Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.


Subject(s)
Adipose Tissue , Obesity , Humans , Animals , Obesity/metabolism , Adipose Tissue/metabolism , Adipokines/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Gastrointestinal Microbiome , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Inflammation Mediators/metabolism , Energy Metabolism
3.
Sci Signal ; 17(836): eadq3321, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743810

ABSTRACT

Activation of GPR81 in white adipose tissue by lactate results in cancer-associated cachexia.


Subject(s)
Cachexia , Lactic Acid , Neoplasms , Receptors, G-Protein-Coupled , Humans , Lactic Acid/metabolism , Neoplasms/metabolism , Receptors, G-Protein-Coupled/metabolism , Cachexia/metabolism , Animals , Adipose Tissue, White/metabolism
4.
J Diabetes Res ; 2024: 5511454, 2024.
Article in English | MEDLINE | ID: mdl-38736904

ABSTRACT

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Subject(s)
Adipogenesis , Adipose Tissue, Brown , Adipose Tissue, White , Diet, High-Fat , Lipase , Mice, Inbred C57BL , Animals , Mice , Male , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lipase/metabolism , Lipase/genetics , Obesity/metabolism , Lipolysis , Uncoupling Protein 1/metabolism , Fibroblast Growth Factors/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Adipocytes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Lipogenesis , Acyltransferases
5.
Food Funct ; 15(8): 4627-4641, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38592736

ABSTRACT

Diet-induced thermogenesis (DIT) is crucial for maintaining body weight homeostasis, and the role of dietary fatty acids in modulating DIT is essential. However, the underlying mechanism of fatty acid regulated diet-induced thermogenesis remains elusive. Utilizing the diet- and genetic ablation-induced obese mice models, we found that the C16 unsaturated fatty acids, trans-palmitoleic acid (TPA) and cis-palmitoleic acid (CPA), significantly increased the energy expenditure by promoting the thermogenesis of brown adipose tissues and the production of beige cells in white adipose. As a result, there is a significant reduction in the occurrence of obesity, associated hepatic steatosis and hyperglycemia. Notably, TPA exhibited more potent effects on promoting DIT and alleviating obesity than CPA did. Using inhibitor and gene deletion mice models, we unveiled that TPA acted as a signaling molecule to play a biological function, which could be sensed by the hypothalamic FFAR1 to activate the sympathetic nervous system in promoting adipose tissue thermogenesis. Together, these results demonstrate the underlying mechanism of free fatty acids associated-DIT and will provide fresh insights into the roles of trans-fatty acids in the development of obesity.


Subject(s)
Fatty Acids, Monounsaturated , Hypothalamus , Mice, Inbred C57BL , Obesity , Receptors, G-Protein-Coupled , Signal Transduction , Thermogenesis , Animals , Thermogenesis/drug effects , Mice , Obesity/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Fatty Acids, Monounsaturated/pharmacology , Hypothalamus/metabolism , Hypothalamus/drug effects , Male , Signal Transduction/drug effects , Energy Metabolism/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Diet, High-Fat
6.
Am J Physiol Endocrinol Metab ; 326(5): E696-E708, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38568151

ABSTRACT

Glycogen is a form of energy storage for glucose in different tissues such as liver and skeletal muscle. It remains incompletely understood how glycogen impacts on adipose tissue functionality. Cold exposure elevated the expression of Gys1 that encodes glycogen synthase 1 in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT). The in vivo function of Gys1 was analyzed using a mouse model in which Gys1 was deleted specifically in adipose tissues. Under normal chow conditions, Gys1 deletion caused little changes to body weight and glucose metabolism. Deletion of Gys1 abrogated upregulation of UCP1 and other thermogenesis-related genes in iWAT upon prolonged cold exposure or treatment with ß3-adrenergic receptor agonist CL-316,243. Stimulation of UCP1 by CL-316,243 in adipose-derived stromal cells (stromal vascular fractions, SVFs) was also reduced by Gys1 deletion. Both the basal glycogen content and CL-316,243-stimulated glycogen accumulation in adipose tissues were reduced by Gys1 deletion. High-fat diet-induced obesity and insulin resistance were aggravated in Gys1-deleted mice. The loss of body weight upon CL-316,243 treatment was also abrogated by the loss of Gys1. In conclusion, our results underscore the pivotal role of glycogen synthesis in adaptive thermogenesis in beige adipose tissue and its impact on diet-induced obesity in mice.NEW & NOTEWORTHY Glycogen is one of major types of fuel reserve in the body and its classical function is to maintain blood glucose level. This study uncovers that glycogen synthesis is required for beige fat tissue to generate heat upon cold exposure. Such a function of glycogen is linked to development of high-fat diet-induced obesity, thus extending our understanding about the physiological functions of glycogen.


Subject(s)
Adipose Tissue, Beige , Diet, High-Fat , Glycogen , Obesity , Thermogenesis , Animals , Thermogenesis/genetics , Thermogenesis/physiology , Mice , Obesity/metabolism , Obesity/genetics , Adipose Tissue, Beige/metabolism , Glycogen/metabolism , Glycogen/biosynthesis , Male , Mice, Knockout , Mice, Inbred C57BL , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Glycogen Synthase/metabolism , Glycogen Synthase/genetics , Cold Temperature , Adaptation, Physiological , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics
7.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
8.
Food Funct ; 15(8): 4515-4526, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38567805

ABSTRACT

Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1ß, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Diet, High-Fat , Glycine , Glycine/analogs & derivatives , Inflammation , Mice, Inbred C57BL , Obesity , Animals , Mice , Diet, High-Fat/adverse effects , Male , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Obesity/metabolism , Obesity/drug therapy , Glycine/pharmacology , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Inflammation/drug therapy , Fatty Liver/drug therapy , Fatty Liver/metabolism , Liver/metabolism , Liver/drug effects , Dietary Supplements
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 499-506, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597441

ABSTRACT

OBJECTIVE: To investigate the effects of α7 nicotinic acetylcholine receptor (nAChR) agonist on ß3-adrenoceptor agonist-induced impairment of white fat homeostasis and beige adipose formation and heat production in obese mice. METHODS: Forty obese C57BL/6J mice were randomized into high-fat feeding group, ß3-adrenoceptor agonist-treated model group, α7 nAChR agonist group, and α7 nAChR inhibitor group (n=10), with another 10 mice with normal feeding as the blank control group. White adipose tissue from the epididymis of the mice were sampled for HE staining of the adipocytes. The expression levels of TNF-α, IL-1ß, IL-10 and TGF-ß in the white adipose tissue were determined by ELISA, and the mRNA levels of iNOS, Arg1, UCP-1, PRDM-16 and PGC-1α were detected using RT-qPCR. Western blotting was performed to detect the expression levels of NF-κB P65, p-JAK2, p-STAT3 in the white adipose tissue. RESULTS: Compared with those in the blank control group, the mice with high-fat feeding showed significantly increased body weight, more fat vacuoles in the white adipose tissue, increased volume of lipid droplets in the adipocytes, upregulated iNOS mRNA expression and protein expression of TNF-α and IL-1ß, and lowered expression of Arg-1 mRNA and IL-10 and TGF-ß proteins (P < 0.01). Treatment with α7 nAChR significantly reduced mRNA levels of PRDM-16, PGC-1α and UCP-1, lowered TNF-α and IL-1ß expressions, increased IL-10 and TGF-ß expressions, and reduced M1/M2 macrophage ratio in the white adipose tissues (P < 0.05 or 0.01). CONCLUSION: Activation of α7 nAchR improves white adipose tissue homeostasis impairment induced by ß3 agonist, promotes transformation of M1 to M2 macrophages, reduces inflammatory response in white adipose tissue, and promote beige adipogenesis and thermogenesis in obese mice.


Subject(s)
Interleukin-10 , alpha7 Nicotinic Acetylcholine Receptor , Animals , Male , Mice , Adipogenesis , Adipose Tissue, White/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Homeostasis , Mice, Inbred C57BL , Mice, Obese , Receptors, Adrenergic/metabolism , RNA, Messenger/metabolism , Thermogenesis , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Life Sci ; 345: 122607, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583857

ABSTRACT

Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.


Subject(s)
Adipose Tissue, Brown , Diabetes Mellitus, Type 2 , Humans , Adipose Tissue, Brown/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Adiposity , Transcription Factors/metabolism , Adipose Tissue, White/metabolism , Thermogenesis/genetics
11.
Front Endocrinol (Lausanne) ; 15: 1344262, 2024.
Article in English | MEDLINE | ID: mdl-38559696

ABSTRACT

Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.


Subject(s)
Hippophae , Morus , Rats , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Hippophae/metabolism , Morus/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Adipose Tissue, White/metabolism , Signal Transduction , Weight Loss
12.
PeerJ ; 12: e17105, 2024.
Article in English | MEDLINE | ID: mdl-38563016

ABSTRACT

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide and is related to diet and obesity. Currently, crosstalk between lipid metabolism and CRC has been reported; however, the specific mechanism is not yet understood. In this study, we screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. According to the results of the biological analysis, we speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Methods: We screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. Results: We speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Conclusions: In this study, the findings raise the possibility of crosstalk between lipid metabolism and CRC through the exosomal delivery of lncRNAs.


Subject(s)
Colorectal Neoplasms , RNA, Long Noncoding , Humans , Transcriptome/genetics , Gene Expression Profiling/methods , RNA, Long Noncoding/genetics , Adipose Tissue, White/metabolism , Colorectal Neoplasms/genetics , RNA, Messenger/genetics
13.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644407

ABSTRACT

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Subject(s)
Adipose Tissue, White , Benzhydryl Compounds , Glucosides , Protein Serine-Threonine Kinases , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Animals , Male , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , AMP-Activated Protein Kinases/metabolism , Benzhydryl Compounds/pharmacology , Diet, High-Fat , Glucosides/pharmacology , Mice, Inbred C57BL , Obesity/metabolism , Obesity/drug therapy , Protein Serine-Threonine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/drug effects
14.
Phytomedicine ; 128: 155551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569293

ABSTRACT

BACKGROUND: Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE: This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS: Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS: Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS: These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.


Subject(s)
Cell Proliferation , Citrates , Forkhead Box Protein O1 , Obesity , Ribosomal Protein S6 Kinases, 90-kDa , Animals , Mice , 3T3-L1 Cells/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Cell Proliferation/drug effects , Citrates/pharmacology , Citrates/therapeutic use , Diet, High-Fat/adverse effects , Forkhead Box Protein O1/antagonists & inhibitors , Forkhead Box Protein O1/metabolism , Mice, Inbred C57BL , Mitosis/drug effects , Obesity/drug therapy , Obesity/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction/drug effects
15.
Clin Res Hepatol Gastroenterol ; 48(5): 102336, 2024 May.
Article in English | MEDLINE | ID: mdl-38604293

ABSTRACT

BACKGROUND: Metabolic associated fatty liver disease (MAFLD) is a prevalent chronic liver condition globally, currently lacking universally recognized therapeutic drugs, thereby increasing the risk of cirrhosis and hepatocellular carcinoma. Research has reported an association between white adipose tissue and MAFLD. SCOPE OF REVIEW: White adipose tissue (WAT) is involved in lipid metabolism and can contribute to the progression of MAFLD by mediating insulin resistance, inflammation, exosomes, autophagy, and other processes. This review aims to elucidate the mechanisms through which WAT plays a role in the development of MAFLD. MAJOR CONCLUSIONS: WAT participates in the occurrence and progression of MAFLD by mediating insulin resistance, inflammation, autophagy, and exosome secretion. Fibrosis and restricted expansion of adipose tissue can lead to the release of more free fatty acids (FFA), exacerbating the progression of MAFLD. WAT-secreted TNF-α and IL-1ß, through the promotion of JNK/JKK/p38MAPK expression, interfere with insulin receptor serine and tyrosine phosphorylation, worsening insulin resistance. Adiponectin, by inhibiting the TLR-4-NF-κB pathway and suppressing M2 to M1 transformation, further inhibits the secretion of IL-6, IL-1ß, and TNF-α, improving insulin resistance in MAFLD patients. Various gene expressions within WAT, such as MBPAT7, Nrf2, and Ube4A, can ameliorate insulin resistance in MAFLD patients. Autophagy-related gene Atg7 promotes the expression of fibrosis-related genes, worsening MAFLD. Non-pharmacological treatments, including diabetes-related medications and exercise, can improve MAFLD.


Subject(s)
Adipose Tissue, White , Insulin Resistance , Humans , Adipose Tissue, White/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Autophagy , Inflammation/metabolism , Disease Progression , Exosomes/metabolism , Lipid Metabolism
16.
Biomolecules ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672499

ABSTRACT

Obesity, characterized by the excessive accumulation of adipose tissue, has emerged as a major public health concern worldwide. To develop effective strategies for treating obesity, it is essential to comprehend the biological properties of different adipose tissue types and their respective roles in maintaining energy balance. Adipose tissue serves as a crucial organ for energy storage and metabolism in the human body, with functions extending beyond simple fat storage to encompass the regulation of energy homeostasis and the secretion of endocrine factors. This review provides an overview of the key characteristics, functional differences, and interconversion processes among white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue. Moreover, it delves into the molecular mechanisms and recent research advancements concerning the browning of WAT, activation of BAT, and whitening of BAT. Although targeting adipose tissue metabolism holds promise as a potential approach for obesity treatment, further investigations are necessary to unravel the intricate biological features of various adipose tissue types and elucidate the molecular pathways governing their interconversion. Such research endeavors will pave the way for the development of more efficient and targeted therapeutic interventions in the fight against obesity.


Subject(s)
Adipose Tissue, Beige , Adipose Tissue, Brown , Adipose Tissue, White , Energy Metabolism , Homeostasis , Obesity , Humans , Adipose Tissue, Brown/metabolism , Adipose Tissue, Beige/metabolism , Adipose Tissue, White/metabolism , Animals , Obesity/metabolism , Thermogenesis , Adipose Tissue/metabolism
17.
J Nutr Biochem ; 128: 109625, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521130

ABSTRACT

Maternal obesity might induce obesity and metabolic alterations in the progeny. The study aimed to determine the effect of supplementing obese mothers with Mel (Mel) on thermogenesis and inflammation. C57BL/6 female mice (mothers) were fed from weaning to 12 weeks control diet (C, 17% kJ as fat) or a high-fat diet (HF, 49% kJ as fat) and then matted with male mice fed the control diet. Melatonin (10 mg/kg daily) was supplemented to mothers during gestation and lactation, forming the groups C, CMel, HF, and HFMel (n = 10/group). Twelve-week male offspring were studied (plasma biochemistry, immunohistochemistry, protein, and gene expressions at the hypothalamus - Hyp, subcutaneous white adipose tissue - sWAT, and interscapular brown adipose tissue - iBAT). Comparing HFMel vs. HF offspring, fat deposits and plasmatic proinflammatory markers decreased. Also, HFMel showed decreased Hyp proinflammatory markers and neuropeptide Y (anabolic) expression but improved proopiomelanocortin (catabolic) expression. Besides, HFMel sWAT adipocytes changed to a beige phenotype with-beta-3 adrenergic receptor and uncoupling protein-1 activation, concomitant with browning genes activation, triggering the iBAT thermogenic activity. In conclusion, compelling evidence indicated the beneficial effects of supplementing obese mothers with Mel on the health of their mature male offspring. Mel led to sWAT browning-related gene enhancement, increased iBAT thermogenis, and mitigated hypothalamic inflammation. Also, principal component analysis of the data significantly separated the untreated obese mother progeny from the progeny of treated obese mothers. If confirmed in humans, the findings encourage a future guideline recommending Mel supplementation during pregnancy and breastfeeding.


Subject(s)
Diet, High-Fat , Dietary Supplements , Hypothalamus , Inflammation , Melatonin , Mice, Inbred C57BL , Obesity, Maternal , Thermogenesis , Animals , Thermogenesis/drug effects , Female , Melatonin/pharmacology , Hypothalamus/metabolism , Hypothalamus/drug effects , Male , Pregnancy , Obesity, Maternal/metabolism , Inflammation/metabolism , Diet, High-Fat/adverse effects , Mice , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Obesity/metabolism , Obesity/drug therapy , Maternal Nutritional Physiological Phenomena , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics
18.
Am J Physiol Endocrinol Metab ; 326(5): E626-E639, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38536037

ABSTRACT

Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.


Subject(s)
Energy Metabolism , Estradiol , Follicle Stimulating Hormone , Ovariectomy , Rats, Wistar , Animals , Female , Energy Metabolism/drug effects , Rats , Follicle Stimulating Hormone/metabolism , Estradiol/pharmacology , Body Composition/drug effects , Body Weight/drug effects , Ovary/drug effects , Ovary/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Liver/metabolism , Liver/drug effects , Transcriptome/drug effects
19.
BMC Pharmacol Toxicol ; 25(1): 26, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504370

ABSTRACT

Browning of white adipose tissue (WAT) is become an appealing target for therapeutics in the treatment of obesity and related metabolic diseases. Dapagliflozin is widely used in the treatment of type 2 diabetes, and it is also found that the drug exhibits regulate systemic metabolism such as obesity, insulin resistance and hepatic steatosis. However, the precise role of dapagliflozin on WAT remodeling remains to be elucidated. The current study aimed to explore the role of dapagliflozin on WAT browning in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice (n = 6 per group) were used to establish obesity model by following feeding with HFD for 6 weeks. The mice were randomly treated with or without dapagliflozin for the experimental observation. The volume and fat fraction of WAT were quantified, H&E, UCP-1 staining and immunohistochemistry were conducted to investigate the white-to-brown fat conversion and angiogenesis in WAT respectively. Quantitative real-time polymerase chain reaction (qPCR) was employed to explore the mRNA expression levels of genes related to fat browning and angiogenesis in WAT. Subsequently, 3T3-L1 cells were used to explore the effect of dapagliflozin on preadipocytes differentiation in vitro. Our results demonstrated that dapagliflozin could reduce body weight gain and promote WAT browning in HFD induced obese mice via regulating lipogenesis and angiogenesis in WAT. Furthermore, dapagliflozin reduce cells differentiation, up-regulate the expression of WAT browning and angiogenesis genes in 3T3-L1 adipocytes in vitro. In conclusion, dapagliflozin can potentially promote WAT browning in HFD induced obese mice via improving lipogenesis and angiogenesis in WAT.


Subject(s)
Angiogenesis , Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Male , Mice , Animals , Mice, Obese , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Adipose Tissue, White/metabolism , Diet, High-Fat/adverse effects
20.
Lipids Health Dis ; 23(1): 81, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509584

ABSTRACT

BACKGROUND: Obesity is associated with extensive white adipose tissue (WAT) expansion and remodeling. Healthy WAT expansion contributes to the maintenance of energy balance in the liver, thereby ameliorating obesity-related hepatic steatosis. Tissue-resident mesenchymal stromal cell populations, including PDGFRß + perivascular cells, are increasingly recognized pivotal as determinants of the manner in which WAT expands. However, the full array of regulatory factors controlling WAT stromal cell functions remains to be fully elucidated. Hypoxia-inducible factors (HIFs) are critical regulators in WAT stromal cell populations such as adipocyte precursor cells (APCs). It is revealed that HIF1α activation within PDGFRß + stromal cells results in the suppression of de novo adipogenesis and the promotion of a pro-fibrogenic cellular program in obese animals. However, the role of HIF2α in PDGFRß + cells remains undetermined in vivo. METHODS: New genetic models were employed in which HIF1α (encoded by the Hif1a gene) and HIF2α (encoded by the Epas1 gene) are selectively inactivated in PDGFRß + cells in an inducible manner using tamoxifen (TAM). With these models, both in vitro and in vivo functional analysis of PDGFRß + cells lacking HIF proteins were performed. Additionally, comprehensive metabolic phenotyping in diet-induced mouse models were performed to investigate the roles of PDGFRß + cell HIF proteins in WAT remodeling, liver energy balance and systemic metabolism. RESULTS: Unlike HIF1α inactivation, the new findings in this study suggest that inducible ablation of HIF2α in PDGFRß + cells does not cause apparent effects on WAT expansion induced by obesogenic diet. The adipogenic ability of PDGFRß + APCs is not significantly altered by genetic HIF2α ablation. Moreover, no difference of key parameters associated with healthy WAT remodeling such as improvements of WAT insulin sensitivity, reduction in metabolic inflammation, as well as changes in liver fat accumulation or systemic glucose metabolism, is detected in PDGFRß + cell Epas1-deficient mice. CONCLUSION: The new findings in this study support that, in contrast to HIF1α, PDGFRß + cell HIF2α appears dispensable for WAT metabolic remodeling and the resulting effects on liver metabolic homeostasis in diet-induced obesity, underscoring the isoform-specific roles of HIFα proteins in the regulation of adipose tissue biology.


Subject(s)
Adipose Tissue, White , Basic Helix-Loop-Helix Transcription Factors , Obesity , Animals , Mice , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Lipids , Liver/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...